

GENAU MEIN KLIMA

TRENCH SYSTEMS FOR A COMFORTABLE INDOOR CLIMATE

Trench systems are the first choice for challenging spaces with floor-to-ceiling windows. Conventional radiators often obstruct the view and draw unwanted attention. They often do not harmonise with the architectural vision.

Kampmann trench systems are installed in the floor underneath the window. They blend into the overall appearance and provide effective temperature control. Full room heating and cooling, supplementary heat provision, cold air screening and façade ventilation: Kampmann trench systems supply an individual climate of well-being.

Contents

04 COMPANY KAMPMANN 38 SUPPLY AIR VERSIONS

06

PRODUCT OVERVIEW **46** PROJECT SUPPORT

10

PRODUCTS IN DETAIL

48 OUR REFERENCES

30 RANGE OF MODELS

WE HAVE BEEN THE MARKET LEADER FOR OVER 50 YEARS

With 950 employees worldwide, Kampmann is one of the leading players in the building services industry. Kampmann is the market leader in trench systems and plays a pioneering role in different market segments with its climate systems for heating, cooling and ventilation.

The Kampmann vision is to deliver the ultimate in quality in design and production. All products are developed in the company's own Research and Development Centre (FEC), and are produced in Germany and Poland. The family-managed company has been operating successfully on the market for almost 50 years. Its strength lies in series production. But also in the manufacture of made-to-measure, projectbased non-standard solutions.

global sites secure our success in the future. Kampmann is one of the leading companies in the building services sector.

We have a leading position on the market with our climate systems for heating, cooling and ventilation.

GENAU MEIN KLIMA

WHICH TRENCH SYSTEM DO I NEED?

REQUIREMENT	KATHERM	DESCRIPTION
"I would like to be able to heat and then cool."	HK * »	The Katherm HK permits demand-led heating from the floor. It also features a cooling function. With its length increments, the Katherm HK is the right solution to meet the most diverse building requirements. The EC tangential fan runs silently and is extremely energy-efficient.
"I would like to heat in a low temperature system."	QK ¹ * ≫	The Katherm QK guarantees effective cold air screening. It is optimised for use with low water temperatures. The extra-long EC fan guarantees high heat outputs with quiet operation. The Katherm QK is immediately available in standard lengths. Tailor-made units are possible.
"I have very little space."	QK NANO	The Katherm QK nano delivers high heat outputs from extremely compact dimensions. With a trench height of only 70 mm and a trench width of only 165 mm, it is used wherever conventional trench solutions are impossible for reasons of space. Due to the limited space in the unit, the interaction of the EC tangential fan and the high-output copper-aluminium fan coil has been optimised in the Katherm QK nano.
"I would like to heat electrically."	QE * * >>	The Katherm QE is the ideal solution when a coil with LPHW cannot be used. They stand out on account of their energy-saving and ultra-quiet EC tangential fans. The high-output electric heating coil delivers high heat outputs, while the sound level is very low.
"I would like to heat without a fan."	NK •) * 22	The Katherm NK with natural convection works extremely energy-efficiently in low temperature mode. Its extensive range with 5 widths, 4 heights and 22 lengths guarantees maximum diversity of planning. Its quick installation with, among other things, Eurokonus valve connection, height adjustment feet and raised floor height adjustment feet, sets the Katherm NK apart.

BENEFITS	PERFORMANCE	DATA / FEATURES	DIMENSIONS [mm]		
 low-cost, effective heating and cooling with low noise levels easy-clean in accordance with VDI 6022 	Heat output Cooling output Convection	 > 544-16884 W¹⁾ > 72-3348 W²⁾ 90-4188 W³⁾ > EC tangential fan 	ιЩ		I (11111111111111
> 2-pipe or 4-pipe system for individual	Heating	> LPHW	130	915-3000	320
comfort in every room	Cooling Ventilation	 CHW optional using supply air modules or supply air ducts 	5 160	950-3000	290
	Control	 KaControl system or electromechanical control as standard possible integration in KaControl networks or building automation systems, such as BACnet, CANbus, KNX, Modbus or LON 	210	950-2250	360
 made-to-measure lengths shallow unit depths combined with high outputs, even in low temperature operation 	Heat output Cooling output Convection	 > 437-6025 W¹) > > EC tangential fan 	īЩ		
> whisper-quiet EC technology	Convection Heating Cooling Ventilation Control	 EC tangential ran LPHW optionally using supply air modules KaControl system or electromechanical control as standard possible integration in KaControl networks or building automation systems, such as BACnet, CANbus, KNX, Modbus or LON 	112	1000-3200	190 215
 > extremely low overall height > maximum use of the available volume 	Heat output Cooling output		īЩ		I (111111111111111111111111111111111111
> usual quietness and high performance	Convection Heating Cooling Ventilation Control	 EC tangential fan LPHW 24 V electromechanical, 230 V electromechanical or KaControl models possible integration in KaControl networks or building automation systems, such as BACnet, CANbus, KNX, Modbus or LON 	70	900-2700	165
 heating without water fast warm-up yet silent operation 	Heat output Cooling output		īЩ		I (111111111111111111111111111111111111
 > ideal alternative to convectors with LPHW 	Convection Heating Cooling Ventilation Control	 EC tangential fan electric heating coil simple, convenient electrical control 0–10 V via room temperature controller or BMS control box with integral infinitely variable power control 	112	825-1700	207
 > compact, performance-optimised > extensive product range 	Heat output Cooling output	> 78-5590 W ¹⁾	ιЩ		I (11111111111111
 shallow unit depths combined with high outputs minimal installation work involved 	Convection Heating Cooling Ventilation Control	 natural LPHW optionally using supply air modules via room or clock thermostats 	92 ¹⁾ 120 ¹⁾ 150 200	800-5000	137 182 232 300 380

I IIII Trench width

ιЦ

Trench length Trench height

+ Heating Cooling *

>>> Ventilation

¹⁾ at LPHW 75/65 °C, $t_{L1} = 20^{\circ}$ C ²⁾ at CHW 16/18 °C, $t_{L1} = 27 ^{\circ}$ C, 48 % rel. h. ³⁾ sensitive cooling output at CHW 6/12 °C, $t_{L1} = 24 ^{\circ}$ C, 50 % rel. h. ⁴⁾ electrical heat output with control voltage BMS 2 – 10 V

WHICH TRENCH SYSTEM DO I NEED?

REQUIREMENT	KATHERM	DESCRIPTION
"I would like to feed in primary air by induction."		The Katherm ID for heating and cooling by the principle of induction is an ideal, low-maintenance solution for feeding supply air into a space in an energy-saving manner without a fan and cooling it down with dry cooling temperature. The principle of induction works with prepared primary air with positive and negative pressure to draw in room air and drag it through the heat exchanger.
"I would like to heat with displacement ventilation."		The Katherm QL is intended for energy-saving ventilation in which considerably less outside air needs to be conditioned to fully ventilate the room, by what is known as the principle of displacement ventilation. The heat load required can also be dissipated through the Katherm QL.
"I would like to ventilate in a space- saving manner without a centralised air handling unit."	UZ/ 1 * 2	Used in raised floors, the UZA provides for heating, cooling and ventilation (supply air, exhaust air) functions with heat recovery. This is a decentralised façade ventilation unit, which feeds outside air in directly through the façade.
"I have a central exhaust air system would like to feed in supply air decentrally."	UZS I * 2	The UZS is also a decentralised façade ventilation unit, which feeds outside air in through the façade. Apart from heating, cooling and ventilation unit functions, the UZS also offers the option of mixing secondary air to increase the output.
"I would like to heat, cool and ventilate with only a single unit."	UZ/ 1 * 2	The UZAS combines the benefits of the UZA and UZS. Apart from heat recovery, the UZAS also enables secondary air to be mixed in to increase the output. When used in a raised floor, it provides for heating, cooling and ventilation functions, feeding in outside air directly through the façade.

BENEFITS	PERFORMANCE		DIMENSIONS [mm]		
 low-maintenance and hygienic heating and cooling with conditioned supply air, with optionally adapted water-based heat exchanger fits numerous supply air volumes 	Heat output Cooling output Convection Heating Cooling Ventilation Control	 633-5487 W¹⁾ 85-824 W²⁾ induction principle LPHW CHW supply air is continuously fed into the room 	110 205	800-1600	I
 > heating and ventilation on the principle of displacement ventilation with conditioned supply air in the room > comfortably used optimised displacement air, even for heating > with patented technology using cam shafts 	Heat output Cooling output Convection Heating Cooling Ventilation Control	 78-1367 W¹) natural LPHW supply air is continuously fed into the room via room or clock thermostats 	I 仁山 150 180	700-2700	I
 for heating, cooling and ventilation with supply air (SUP) and exhaust air (ETA) with forced ventilation with heat recovery inspection and maintenance-friendly thanks to easily removable grille cover (modular design) 	Max. outside air volume Heat output Cooling output Convection Heating Cooling Ventilation Control	> 1270 W ⁵⁾	I亡 230 (172 underfloor)	1250	I
 for heating, cooling and ventilation with supply air (SUP) and secondary air (SEC) with forced ventilation with 2-pipe or 4-pipe coil high calorific output by the addition of secondary air 	Max. outside air volume Heat output Cooling output Convection Heating Cooling Ventilation Control	> 904 W ¹⁾	I 🗀 200 (143 underfloor)	1150	I
 > for heating, cooling and ventilation with supply air (SUP), exhaust air (ETA) and secondary air (SEC) with forced ventilation > with heat recovery > comfortable room climate as air is fed in close to the façade 	Max. outside air volume Heat output Cooling output Convection Heating Cooling Ventilation Control	> 1550 W ³⁾	I 214 (172 underfloor)	1000	I
I ITrench width I Heat IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	-	¹⁾ at LPHW 75 / 65 °C, tL1 = 20 °C ²⁾ at CHW 16 / 18 °C, tL1 = 26 °C, 48 % rel. humidity ³⁾ Usable output 75/65/20/-12 °C VL/RL/RT/AL ⁴⁾ Usable output 16/18/26/32 °C VL/RL/RT/AL			

KATHERM **HK**

Trench units for heating and cooling. EC cross-flow fan convection, whisper-quiet and energy-efficient.

Trench width Trench height B C	Trench height	Trench length	Heat output 1)		Cooling ou	utput, dry ²⁾	Sound pressure	Sound power level 4)
	A	2-pipe	4-pipe	2-pipe	4-pipe	level-7 %	level "	
[mm]	[mm]	[mm]	[W]	[W]	[W]	[W]	[dB(A)]	[dB(A)]
	ĺ	915	706-2101	544-1220	87-356	85-337	<20-39	<28-47
		1200	1102-3627	954-2185	160-630	161-620	<20-41	<28-49
22.0	120	1700	2149-6043	1766-3785	279-1043	280-1027	<20-41	<28-49
320	130	2000	2321-7573	2110-4884	312-1326	314-1307	<20-44	<28-52
		2500	3336-10103	2822-6415	432-1749	433-1722	<20-44	<28-52
		3000	4266-12553	3611-8004	551-2159	552-2124	<20-44	<28-52
		950	673-2811	564-1586	75-534	72-495	<20-39	<28-47
		1200	1137-4752	954-2681	127-903	121-837	<20-42	<28-50
	1.50	1700	1810-7562	1518-4268	202-1437	193–1332	<20-44	<28-52
290	160	2000	2370-9905	1988-5590	265-1882	253-1744	<20-45	<28-53
		2500	3027-12648	2539-7138	338-2404	323-2228	<20-46	<28-54
		3000	4036-16865	3385-9517	451-3205	431-2970	<20-47	<28-55
		950	887-4113	643-2982	92-816	87-768	<20-51	<28-59
		1200	1471-6819	1066-4944	152-1352	144-1273	<20-52	<28-60
360	210	1350	1821-8442	1320-6121	189-1674	178-1576	<20-52	<28-60
		1850	2755-12771	1998-9261	286-2533	269-2385	<20-53	<28-61
		2250	3642 - 16884	2641-12243	378-3348	356-3153	<20-55	<28-63

Dimensions

Front view

Top view (view without cover panels)

Installation example of HK 320 Installed in screed

Installation example of HK 290 Installation in a raised floor

- 3 Floor trench
- 4 High-output convector
- 5 Filter (optional)

Installation example of HK 360 Installation in a raised floor

- 2 Raised floor
- 3 Floor trench
- 4 High-output convector

¹⁾ Heat output at LPHW 75 / 65 °C, room temperature 20°C, with fan-assisted convection

- ²⁾ Cooling output at CHW 16 / 18, room temperature 27 °C, 48% relative humidity, with fan-assisted convection
- $^{3)}$ The sound pressure levels were calculated with an assumed room insulation of 8 dB(A).

This corresponds to a distance of 2 m, a room volume of 100 m³ and a reverberation time of 0.5 s (in accordance with VDI 2081).

 $^{\rm 4)}$ Sound pressure level <20 dB(A) and sound power level <28 dB(A) outside the usual measuring and audible range.

KATHERM **QK**

Trench units with EC cross-flow fan convection. For low-temperature heating.

Model		Sound pressure	Sound power level 3)			
	at LPHW 75 / 65 °C	at LPHW 55 / 45 °C	at LPHW 45 / 35 °C	at LPHW 35 / 30 °C	level -/ -/	level.
	[W]	[W]	[W]	[W]	[dB(A)]	[dB(A)]
Katherm QK 190	437-5781	257-3413	169-2246	104-1383	<20-41	<28-49
Katherm QK 215	522-6025	315-3481	211-2252	133-1359	<20-41	<28-49

Dimensions

Front view

Cross-sectional view

Ľ	U

Katherm	Trench width B	Trench height C	Trench length A	
	[mm]	[mm]	[mm]	
QK 190	190	112	1000-3200	
QK 215	215	112	1000-3200	

Top view (view without cover panels)

Katherm QK 190

Installation in screed, H = 112 mm, W = 190 mm

- 5 High-output convector

Katherm QK 215

Installation in a raised floor, H = 112 mm, W = 215 mm

1 Concrete slab

- 2 Raised floor
- 3 Floor trench 4 High-output
 - convector

¹⁾ at room temperature 20 °C, with grille bar spacing 12 mm, free cross-section approx. 70%, with fan-assisted convection

This corresponds to a distance of 2 m, a room volume of 100 m³ and a reverberation time of 0.5 s (in accordance with VDI 2081).

 $^{3)}$ Sound pressure level <20 dB(A) and sound power level <28 dB(A) outside the usual measuring and audible range.

 $^{^{2)}\}mbox{The sound pressure levels were calculated with an assumed room insulation of 8 dB(A).$

KATHERM QK NANO

Trench units with EC cross-flow fan convection. Nano format – top performance.

Trench	length	Heat output ¹⁾			Sound pressure	Ire Sound power		
Electromechanical model 24 V	230 V electrome- chanical model or KaControl	at LPHW 75 / 65°C	at LPHW 55 / 45 ℃	with LPHW 90/70 °C	with LPHW 82/71 °C	with LPHW 40/30 °C	level	level
[mm]	[mm]	[W]	[W]	[W]	[W]	[W]	[dB(A)]	[dB(A)]
900	1100	248-772	120-461	321-928	295-874	45-229	<20-34	<28-42
1400	1600	496-1545	241-922	642 - 1857	590-1748	90-458	<20-37	<28-45
1800	2000	744-2317	361–1384	963-2785	885-2621	135-687	<20-39	<28-47
2100	2300	935-2912	454-1739	1211-3500	1112-3294	170-864	<20-40	<28-48
2600	2700	1132-3524	549-2105	1465-4236	1346-3987	206-1046	<20-41	<28-49

Dimensions

Front view

Top view (view without cover panels)

Cross-sectional view

Trench length A	Finned convector length
[mm]	[mm]
900	435
1400	870
1800	1305
2100	1640
2600	1985

Installation example showing Katherm QK nano Installation in screed, H=70 mm, W=165 mm

Installation example showing Katherm QK nano Installation in a raised floor, H=70 mm, W=165 mm

 $^{\scriptscriptstyle 1)}$ at room temperature 20 °C, with fan-assisted convection

 $^{\scriptscriptstyle 2)} The sound pressure levels were calculated with an assumed room insulation of 8 dB(A).$

This corresponds to a distance of 2 m, a room volume of 100 m³ and a reverberation time of 0.5 s (in accordance with VDI 2081).

 $^{3)}$ Sound pressure level <20 dB(A) and sound power level <28 dB(A) outside the usual measuring and audible range.

KATHERM **QE**

EC tangential fan-assisted convection with electric heating element.

Trench width	Trench height	Heating element height/depth	Trench length A	Finned coil length	Max. heat output	Max. sound pressure level ^{1) 2)}	Max. sound power level ²⁾
[mm]	[mm]	[mm]	[mm]	[mm]	[W]	[dB(A)]	[dB(A)]
			825	400	800	28	36
207	112	25 x 50	1250	835	1600	31	39
			1700	1270	2400	33	41

Dimensions

Front view

Top view (view without cover panels)

Installation example of Katherm QE

Installation in screed, H = 112 mm, W = 207 mm

Installation example of Katherm QE

Installation in a raised floor, H = 112 mm, W = 207 mm

207

Cross-sectional view

- 1 Concrete slab
- 2 Raised floor
- 3 EC tangential fan
- 4 Electric heating coil

 $^{\mbox{\tiny 1)}} The sound pressure levels were calculated with an assumed room insulation of 8 dB(A).$

This corresponds to a distance of 2 m, a room volume of 100 m³ and a reverberation time of 0.5 s (in accordance with VDI 2081).

 $^{\rm 2)}$ Sound pressure level <20 dB(A) and sound power level <28 dB(A) outside the usual measuring and audible range.

KATHERM **NK**

Trench system with natural convection, no moving parts.

				Heat outputs 1)				
Katherm NK model	Trench length A	Trench width B	Trench height C	LPHW 75 / 65 °C	LPHW 55 / 45 °C	LPHW 50/40°C	LPHW 45/35°C	
	[mm]	[mm]	[W]	[W]	[W]	[W]	[W]	
NIK 427		427	92	78-981	34-431	26-322	18-224	
NK 137		137	120	84-1050	35-438	26-321	18-219	
			92	132–1295	66-646	51-504	38-372	
NIK 102		102	120	162 – 1594	80-784	62 – 608	45-446	
NK 182		182	150	206–1857	96-867	73-661	53-474	
			200	232-2084	106-954	80-722	57-513	
			92	157–1530	76-741	59-572	43-417	
		232	120	193–1881	93-911	72-703	53-512	
NK 232	800-5000		150	309-2778	146-1381	112-1010	81–729	
			200	334-3010	160-1442	123-1109	89-804	
			92	209-2036	104-1011	81-788	60-580	
NK 300			120	268-2609	133-1296	104-1010	76-744	
NK 300		300	150	394-3545	189-1699	145-1306	105-947	
			200	445-4003	211-1899	162-1455	117-1050	
			92	279-2717	142-1384	112-1088	83-810	
NK 380		380	120	344 – 3353	173-1691	136-1325	101–982	
USC JUI		380	150	485-4362	235-2112	181-1630	132-118	
			200	621-5590	299-2693	231-2075	168–1508	

Dimensions

Cross-sectional view

Front view

Top view (view without cover panels)

Katherm NK 232 Installed in screed

- 3 Screed
- 4 Floor trench
- 5 High-output convector

Katherm NK 380

Installation in a raised floor

- 1 Concrete slab
- 2 Raised floor
- 3 Floor trench
- 4 High-output convector

KATHERM **ID**

Trench units for heating and cooling by the principle of induction without rotating parts with conditioned air.

Trench width	Trench height	Trench length	Heat output ¹⁾		Cooling	output ²⁾	Sound pressure level ³⁾	Sound power level 4)
В	С		2-pipe	4-pipe	2-pipe	4-pipe	level ^s	level *
[mm]	[mm]	[mm]	[W]	[W]	[W]	[W]	[dB(A)]	[dB(A)]
	Ì	800	990-1975	816-1323	125 - 332	125 - 332	<20 - 33	<28 - 41
	180	1000	1329-2711	1114-1834	165 - 453	165 - 453	<20 - 34	<28 - 42
		1200	1726-3534	1445-2385	215 - 591	215 - 591	<20 - 36	<28 - 44
		1400	2242-4357	1845-2937	283 - 730	283 - 730	<20 - 37	<28 – 45
340		1600	2640-5180	2177-3488	333 - 868	333 - 868	<20 - 37	<28 - 45
340		800	1069-2181	816-1323	142 - 383	142 - 383	<20 - 33	<28 – 41
		1000	1433-2991	1114-1834	188 - 522	188 - 522	<20 - 34	<28 – 42
	205	1200	1862-3900	1445-2385	244 - 681	244 - 681	<20 - 36	<28 - 44
		1400	2422-4808	1845-2937	323 - 841	323 - 841	<20 - 37	<28 – 45
		1600	2851-5717	2177-3488	379 - 1001	379 - 1001	<20 - 37	<28 – 45

Dimensions

Front view

Top view (without cover panel)

Installation example of ID 340

Installation in a raised floor, cooling

1 Concrete slab

- 2 Raised floor
- 3 Floor trench
- 4 High-output convector
- 5 Induction nozzle

Installation example of ID 340

Installation in a raised floor, heating

В

Ð

Cross-sectional view

75

1 Concrete slab

2 Raised floor

- 3 Floor trench
- 4 High-output convector
- 5 Induction nozzle

 $^{\scriptscriptstyle 1)}$ Heat output at LPHW 75 / 65 °C, room temperature 20 °C

- ²⁾ Cooling output at CHW 16 / 18 °C, room temperature 26 °C, 48% relative humidity
- $^{\scriptscriptstyle 3)}$ The sound pressure levels were calculated with an assumed room insulation of 8 dB(A).

This corresponds to a distance of 2 m, a room volume of 100 m³ and a reverberation time of 0.5 s (in accordance with VDI 2081).

 $^{4)}$ Sound pressure level <20 dB(A) and sound power level <28 dB(A) outside the usual measuring and audible range.

KATHERM **QL**

The displacement air system for draught-free and energy-saving displacement ventilation.

Model Katherm QL		Trench length A	Trench width B	Trench height C	Heat outputs ¹⁾				
	Primary air				LPHW 75 / 65 °C	LPHW 55/45 °C	LPHW 50/40 °C	LPHW 45/35 °C	
		[mm]	[mm]	[mm]	[W]	[W]	[W]	[W]	
QL 300				150	133-796	63-379	49-291	35-211	
			300	180	166-995	80-482	62-372	45-271	
QL 350	none	700	250	150	156-937	74-446	57-343	41-248	
		1200	350	180	195-1171	94-567	73-438	53-319	
01.200	20-80m³/h	1700 2200	300	150	116-697	59-351	46-275	34-204	
QL 300	per metre of trench	2700	300	180	156-935	76-458	59-355	43-260	
01.250	at 2–4 K		250	150	137-820	69-413	54-324	40-240	
QL 350	undertemper- ature		350	180	183-1100	90-539	70-418	51-306	

Dimensions

Front view

Cross-sectional view

Top view (without cover panel)

Installation example of QL 300

Installation in a raised floor

- 1 Concrete slab
- 2 Raised floor
- 3 Floor trench
- 4 High-output convector

Installation example of QL 350

Installation in a raised floor

- 1 Concrete slab
- 2 Raised floor
- 3 Floor trench
- 4 High-output convector

Proportion of outside air	Proportion of secondary air	Heat output, total / usable output ¹⁾		Cooling output, total / usable output ²⁾		Sound pressure level	Sound power level
		2-pipe	4-pipe	2-pipe	4-pipe		
[m³/h]	[m³/h]	[W]	[W]	[W]	[W]	[dB(A)]	[dB(A)]
	0	653/372	643/361	249/106	219/94	21	29
30	115	2070/1934	1244/1003	432/363	400/331	31	39
	218	3141/3135	1674/1484	638/564	580/508	48	56
	0	1288/724	963/359	413/179	356/157	21	29
60	105	2541/2081	1492/900	523/392	485/355	31	39
	208	3568/3224	1864/1306	717/583	652/519	48	56
	0	1901/1051	1273/345	557/244	474/213	28	36
90	93	2972/2194	1713/777	608/415	563/371	32	40
	199	3986/3311	2036/1116	795/599	722/529	48	56
	0	2491/1353	1568/314	680/302	573/262	34	42
120	68	3254/2153	1870/595	667/412	617/364	35	43
	188	4370/3365	2184/904	866/609	788/533	48	56

Dimensions

Front view (air inlet façade side)

Plan view

Cross-sectional view

¹⁾ Cooling: Flow temperature tV °C 16, Return temperature tR °C 18 | Air inlet temperature, secondary air tSEC °C 26 | Relative air humidity, secondary air φ SEC % 50 | Air inlet temperature, outside air tODA °C 32 | Relative air humidity, outside air φ ODA % 40 ²⁾ Heating: Flow temperature tV °C 75 | Return temperature tR °C 65 | Air inlet temperature, secondary air tSEC °C 20 | Air humidity, secondary air φ SEC % 50 | Air inlet temperature, outside air tODA °C -12 | Relative air humidity, outside air φ ODA % 50

Proportion of outside air	Heat outp usable o			itput, total / output ²⁾	Sound pressure level	Sound power level	
	2-pipe	4-pipe	2-pipe	4-pipe			
[m³/h]	[W]	[W]	[W]	[W]	[dB(A)]	[dB(A)]	
30	860/538	662/341	180/100	141/81	19	27	
60	1723/1080	1313/669	322/186	270/149	22	30	
90	2568/1604	1942/977	446/265	392/211	30	38	
120	3397/2112	2557/1271	584/343	513/272	37	45	

Dimensions

Front view (air inlet façade side)

Plan view

¹⁾ Cooling: Flow temperature tV °C 16, Return temperature tR °C 18 | Air inlet temperature, secondary air tSEC °C 26 | Relative air humidity, secondary air φ SEC % 50 | Air inlet temperature, outside air tODA °C 32 | Relative air humidity, outside air φ ODA % 40 ²⁾ Heating: Flow temperature tV °C 75 | Return temperature tR °C 65 | Air inlet temperature, secondary air tSEC °C 20 | Air humidity, secondary air φ SEC % 50 | Air inlet temperature, outside air tODA °C -12 | Relative air humidity, outside air φ ODA % 50

Cross-sectional view

Proportion of outside air	Proportion of secondary air	Heat output, total / usable output ¹⁾		Cooling output, total / usable output ²⁾		Sound pressure level	Sound power level
		2-pipe	4-pipe	2-pipe	4-pipe		
[m³/h]	[m³/h]	[W]	[W]	[W]	[W]	[dB(A)]	[dB(A)]
	32	1135/815	965/645	201/142	192/133	20	28
30	104	1997/1677	1417/1097	358/299	340/281	26	34
	187	2898/2578	1851/1531	508/449	481/423	40	48
	32	1818/1178	1443/803	324/207	310/192	23	31
60	104	2646/2006	1863/1223	468/351	446/329	27	35
	187	3503/2863	2239/1599	604/487	574/457	40	48
	32	2646/1504	1872/912	439/263	419/243	28	36
90	104	3257/2297	2252/1292	570/395	544/368	30	38
	187	4068/3108	2564/1604	691/515	658/482	40	48
	31	3068/1788	2264/1604	544/310	520/286	34	42
120	99	3789/2509	2586/1306	657/424	627/393	35	43
	178	4525/3245	2829/1549	761/527	725/491	41	49

Dimensions

Plan view

Cross-sectional view

¹⁾ Cooling: Flow temperature tV °C 16, Return temperature tR °C 18 | Air inlet temperature, secondary air tSEC °C 26 | Relative air humidity, secondary air φ SEC % 50 | Air inlet temperature, outside air tODA °C 32 | Relative air humidity, outside air φ ODA % 40 ²⁾ Heating: Flow temperature tV °C 75 | Return temperature tR °C 65 | Air inlet temperature, secondary air tSEC °C 20 | Air humidity, secondary air φ SEC % 50 | Air inlet temperature, outside air tODA °C -12 | Relative air humidity, outside air φ ODA % 50

RANGE OF MODELS FOR GREATER FLEXIBILITY OF ROOM DESIGN

Swedbank AB, Stockholm, Sweden

KATHERM TRENCH TECHNOLOGY FLEXIBLY ADAPTABLE

Adjustments and special designs are the norm in project work. Katherm trench units are therefore available for all geometries, incorporating mitred corners, curved sections, column cut-outs or angles.

MIDDLE COVER IN THE BUILDING GRID

- A Modular brackets combine Katherm trench units A Modular brackets combine Katherm trench units with the Katherm connection modules
 B Flat design, for instance for bridging cladding anchors
 C Robust height adjustment for ease of adaptation
 D Katherm modules can be cut to size on site
 E Grille support
 F Frame profile delivered separately

KATHERM TRENCH TECHNOLOGY FLEXIBLY ADAPTABLE

Individual connecting modules between the Kampmann trench units create an aesthetic overall picture without disruptive interruptions. You're prepared for every architectural challenge with Kampmann.

TECHNICAL DETAILS

1 CONNECTING MODULE > available in different lengths > can be shortened on site by up to 100 mm to fit the building structure

2 PARTITION SUPPORT

- > can be used in combination with the connecting module
- > in a range of different versions for all wall thicknesses
- > position of partition support can be varied

3 END MODULE

- > for on-site length adjustment with slide-in head section
- > can be cut

4 CORNER MODULE
> connecting module with a 90° angle cannot be
shortened

5 COLUMN MODULE, RECTANGULAR > connecting module with recess support element with frame profile is delivered precisely to fit following site measurement

> ideal for all kinds of façade profiles

6 ROUND COLUMN MODULE

- > connecting module with cut-out> attachment element with round frame profile
- is delivered made-to-measure following site measurement

GRILLE COLOURS

Opt for aluminium grilles in a range of anodised finishes. Or for different finishes of wooden grilles. Perhaps you might prefer polished stainless steel grilles?

The grille colours illustrated here do not represent an exact reproduction of the original shades. Please contact us for sample grilles if required.

SUPPLY AIR VERSIONS FOR KATHERM TRENCH UNITS

Prime Tower Zurich, Switzerland

THE HYBRID ECO SYSTEM

Energy-efficient and environmentally-friendly building ventilation and air conditioning solution

Almost all Katherm trench units can be fitted with a supply air function for specific projects. Primary air, pre-conditioned by a central ventilation unit, can be introduced into a room through various supply air spigots, perfectly combining heating, cooling and a supply of fresh air. The space requirement is thus minimised and comfort in the building maximised.

A Air handling unitB Trench unitC Exhaust air box

- D Rain hoodE Weather protection grille

The Hybrid ECO system is a bidirectional ventilation system with efficient heat recovery. Although the temperature is adjusted on this system by decen-tralised equipment in the inside of the room and not via the central ventilation unit (air handling unit).

SUPPLY AIR VERSIONS

Fresh air fed in through trench units – for maximum space saving and comfort

Katherm HK with supply air channel (filter, optional accessories) is shown by way of example

The Katherm supply air trench is available for all trench convectors (Katherm range). This represents a 400 mm long trench, which can be fitted to all designs of Katherm units.

Treated supply air can also be fed into rooms through the Katherm supply air trench ZL. This is achieved using different spigot sizes and spigot designs to fit the various duct dimensions (refer to the technical catalogues for the individual Katherm trench units). It is possible to regulate the volumetric flow in situ by means of slider elements in the supply air modules.

BENEFITS:

- > low leaving air speeds, hence pleasant levels of comfort
- > low sound development when correctly designed
- > low investment and maintenance costs
- > supply air outlets visually identical to Katherm trench units
- > no wear parts / no electrically rotating parts

COMFORT

Comfort also plays a key role in air conditioning. We'll help you to consider this aspect when designing a project using Kampmann trench convectors, at the same time as complying with the current guidelines in EN 15251 (in future EN 16798 Parts 1 and 2) and EN ISO 7730. Essentially the following recommended values can be assumed:

FOR HEATING:

Supply air outlet air temperature: 20 - 26 °C (but not lower than the room temperature) Outlet air speed: < 1.5 m/s distance of supply air trench to the occupied zone: > 0.5 m

FOR COOLING:

Supply air outlet air temperature:

< 4 K below room temperature outlet speed: < 1.2 m/s distance of supply air trench to the occupied zone: > 1 m

OTHER PARAMETERS

In individual cases, additional parameters, such as room and supply air humidity, as well as leaving air speed, need to be taken into consideration. (See EN ISO 7730)

ADDITIONAL INFORMATION

The supply air models Katherm ZL can be used for cooling, heating or isothermic air exchange using preconditioned primary air. A spigot or connection at the front end is also possible with appropriate trench dimensions and sufficient space in the air outlet area (examination on request!).

The upper limit of the air volume in the spigot is calculated from the maximum air speed and cross-section of the spigot. This speed should not exceed 3.0 m/s to avoid additional sound emissions. The resulting air-side pressure losses vary according to the air volume as per the diagram.

Design diagrams

SUPPLY AIR VERSIONS

KATHERM NK

with natural convection and additional output increase through convection with conditioned supply air.

WITH SIDE SUPPLY AIR SPIGOTS

With air guidance through the convector.

With air guidance through the convector and perforated plate underneath the convector.

WITH SUPPLY AIR SPIGOT BELOW

With air guidance through the convector and perforated plate underneath the convector.

KATHERM QK

with fan-assisted convection and supply of fresh air.

With air guidance through a separate discharge duct.

With air guidance through a separate discharge duct.

With air guidance through the convector and perforated plate underneath the convector.

KATHERM HK

for heating and cooling with fresh air supply separate from the air flow from the fan. $^{1)}\,$

With air guidance through separate supply air modules.

KATHERM QL

with natural convection and comfortable supply of displaced air even for heating. Fresh air always improves the quality of air in a room.

With separate supply air guidance by natural convection even for heating. (Displacement ventilation)

KATHERM ID

for heating and cooling with fresh air supply without a fan.

With supply air feed under the coil. Secondary air is drawn along through the coil.

The trench dimensions are not feasible? They are!

With all trench models, empty trenches with supply air spigots can be integrated into other trench models to introduce supply air. Alternatively these trenches can also be used as pure exhaust air trenches.

DIMENSIONS OF SUPPLY AIR MODELS

Dimensions	Max. air volume/spigot
	[m³/h]
DN 60	31
DN 70	42
DN 80	55
DN 100	85
DN 125	133
DN 150	191
51 x 128 oval	65
50 x 100 square	54
100 x 150 square	162

ALTERNATIVE FEED OF SUPPLY AIR THROUGH A PRESSURISED FLOOR

The drawing shows a Katherm HK with supply air box for spigots and for a pressurised floor (by way of example).

Supply air box for pressurised floor

Supply air box with DN 80 spigot

BEST SUPPORT FOR YOUR PROJECT

We are always there for you – in person. Wherever you are. We offer a range of design support tools: smart apps and calculation programs, BIM data and CAD drawings.

CONSULTATION

Apart from comprehensive advice and design of the building services systems on site, we can also provide the precise documentation you required for every project.

DESIGN

We would be pleased to produce project-specific design drawings and wiring diagrams for your project to make your design easier.

SITE MEASUREMENT

Site measurement is done by our own Kampmann technicians using 2D or 3D lasers to avoid inaccuracies. That way we ensure a precise and efficient site measurement process.

DELIVERY

Kampmann products are delivered sorted on pallets to site. By clear position labelling on the packaging, the delivery can be assigned to the correct floor and installation location.

INSTALLATION

We can support you with our own installation team. The trench units are configured to help the heating contractors on site. Skilled professionals then connect up the water pipes and electrics.

CUSTOMER SERVICE

Rely on the organisation and implementation of the global service assignments by our Customer Service team. Our Kampmann service specialists will look after you at 3 sites with over 130 trained contract engineers at 80 national and international sites.

BIM DATA SETS

Use the BIM data sets for Kampmann Katherm trench units for seamless workflows throughout your design phase. They include unit dimensions, technical dimensions of water and electrical connections and performance data.

SCHLOSS ELMAU RETREAT, **ELMAU-KLAIS/ GERMANY**

Another historical chapter was added to the long and thrilling history of Schloss Elmau on 7 and 8 June 2015: the Heads of States of the G7 countries discussed issues of global interest at the G7 Summit. The conference was held at the "Schloss Elmau retreat", a new building only opened in April 2015 and located directly adjacent to the castle itself.

QUARTIER BELVEDERE CENTRAL, VIENNA/ AUSTRIA

The "Quartier Belvedere Central", abbreviated to QBC, is an extraordinary project – not just because of its scale. Six buildings with a total gross floor area of 130,000 square metres will be built on a 25,000 square metre area of land. The QBC includes, among other things, hotels, offices, apartments, shops and restaurants – a mix that breathes life into the district even after dark.

ROOMERS, BADEN-BADEN/ GERMANY

The designer "Roomers Baden-Baden" hotel opened in October 2016, with a perfect location, very close to the Festival Hall. The overall interior design concept and the room design was in the capable hands of the renowned Italian designer Piero Lissoni.

The convectors provide effective cold air screening in front of the large expanses of glazing in the new restaurant area and staff room in Hellbrunn Castle. The bronze anodised grilles match the rustic interior fit-out perfectly.

The high heat output of the convector was measured and confirmed in accordance with EN 16430. At the same time, the Katherm NK is ideal for energy-saving low-temperature operation.

HELLBRUNN CASTLE, SALZBURG/ AUSTRIA

EUROTHEUM, FRANKFURT AM MAIN/ GERMANY

The Eurotheum is a high-rise building right in the heart of Frankfurt's banking district. Its immediate neighbour is the Main Tower, Germany's fourth tallest building. Only half its size, the Eurotheum comes across like its little brother – although "little" is still an impressive 110 metres. And in reality, the Main Tower and Eurotheum were both built at the same time, with both being released for occupation in 2000.

GERMAN FOOTBALL MUSEUM, **DORTMUND/ GERMANY**

The site of the German Football Museum was determined in a multi-stage process – and a better site could not have been chosen. The museum is located in central Dortmund, a city with a major club and even greater footballing enthusiasm, which can be perfectly reached from all directions and is located directly opposite the main railways station. The museum was designed by architects HPP (Hentrich-Petschnigg & Partner), based in Düsseldorf. "An ecologically and economically sustainable and efficient construction" was crucial to the German Football Association. That is one reason why Kampmann trench units is installed underneath the high glazed façades around the ground floor and café.

kampmanngroup.com

Kampmann GmbH Friedrich-Ebert-Str. 128–130 49811 Lingen (Ems), Germany

T +49 591 7108-660

F +49 591 7108-173

E export@kampmann.de